

www.resonon.com 123 Commercial Drive +1.406.586.3356
 Bozeman, MT, USA, 59715

User-written Plugins in Spectronon
Example: Using Wien’s Law to Create Heat Maps

We can use the wavelength of the peak spectral emission to estimate the temperature from the
spectrum in each pixel using Wien’s law:

𝜆𝜆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
𝑏𝑏
𝑇𝑇

Where b is Wien’s displacement constant equal to 2898 μm⋅K. Solving for temperature and assuming
light incident on the sensor is emitted from the fire (this analysis does not hold for reflectance data),
we can estimate the temperature at each pixel from the brightest wavelength as :

𝑇𝑇 =
𝑏𝑏

𝜆𝜆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

Spectronon doesn’t have a bult in tool to calculate this, but Spectronon does have a Python
programming interface that allows for custom analysis plugins. A simple plugin that performs these
computations looks like this:

from src.apps.spectronon.workbench.plugin import CubePlugin
from src.lib.resonon.core.data.cube import Cube
from resononhyperspectral import Interleave
import numpy

class Wien(CubePlugin):
 label = "Wien's Law"
 tooltip = "Estimate temperature with Wien's law"

 def action(self):
 # get the raw data from the datacube, as a 3D array. Since we request it in bip()
interleave, we know the
 # dimensions of the array are (lines, samples, bands)
 data_array = self.datacube.bip().data()

 # get the wavelengths of the datacube as a numpy array
 wavelengths = self.datacube.wavelength_array

 # For each pixel in the cube, find the index of the brightest band. We use axis=-1
because we requested the
 # cube data in BIP interleave, so we know the first two dimensions of the data are
spatial and the last is
 # spectral. This gives a two dimensional array where each pixel represents the index
of the band where the
 # brightest value occurs.
 brightest_band_index = numpy.argmax(data_array, axis=-1)

 # Now, convert the index of the brightest band to a wavelength by looking it up in the
wavelength array
 brightest_wavelength = wavelengths[brightest_band_index]

https://en.wikipedia.org/wiki/Wien%27s_displacement_law#:%7E:text=Wien's%20displacement%20law%20states%20that,inversely%20proportional%20to%20the%20temperature.&text=Wien's%20displacement%20law%20may%20be,used%20for%20the%20Wien%20approximation.

www.resonon.com 123 Commercial Drive +1.406.586.3356
 Bozeman, MT, USA, 59715

 # apply Wien's law to estimate the temperature in K of each pixel
 b = 2898.0 * 1000.0 # convert micrometers to nanometers
 temperature_k = b / brightest_wavelength

 # convert from Kelvin to Celsius
 temperature_c = temperature_k - 273.15

 # finally, we'll mask out parts of the cube for which the calculations are invalid.
 # Wien's law only applies to emission data - that is the portions of our image that
are actually fire.
 # Portions of the image that are dominated by a reflectance signal are not valid for
this calculation, so we'll
 # set them to zero. For this data, we'll assume that anything with a brightest
wavelength less than 1500 mm, or
 # with a DN less than 4000 at 1600 nm is not part of the fire
 temperature_c[brightest_wavelength < 1500] = 0
 temperature_c[self.datacube.band_at_wavelength(1600) < 4000] = 0

 # Now we build and return a new datacube from the temperature data
 # datacubes are expected to be 3 dimensional, so reshape our numpy array to have
 # a 3rd dimension (a single band), then create a datacube with it:
 temperature_c = numpy.expand_dims(temperature_c, axis=-1)
 datacube = Cube.from_array(temperature_c, interleave=Interleave.BIP)

 # preserve rotation metadata from the original cube, if it has been set
 try:
 datacube.set_header_value('rotation', self.datacube.get_header_value('rotation'))
 except KeyError:
 pass

 return datacube

If you copy this code into a file called Wien.py and place it in the Spectronon User Plugin Directory
(typically "C:\Users\<UserName>\AppData\Local\SpectrononPro3\user_plugins\cube\user\"), and
select “Reload Plugins” from Spectronon’s file menu, Spectronon will add the custom analysis plugin to
it’s menu system:

www.resonon.com 123 Commercial Drive +1.406.586.3356
 Bozeman, MT, USA, 59715

You can then run the custom analysis just like any other Spectronon Plugin! We can use the inspect tool
in Spectronon to read the predicted temperatures of the fire in degrees C. The fire has a temperature
range of about 1550-1650 degrees C, with the uphill part of the fire burning hotter than the downhill
portion:

Here’s the image with the predicted temperatues overlayed on top:

Predicted Temperature at
cursor location in degrees C

	User-written Plugins in Spectronon
	Example: Using Wien’s Law to Create Heat Maps

