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Abstract: Many rocks, minerals, and soil types reflect short-wave infrared (SWIR) imagery
(900–2500 nm) in distinct ways, and geologists have long relied on this property to aid in the map-
ping of differing surface lithologies. Although surface archaeological features including artifacts,
anthrosols, or structural remains also likely reflect SWIR wavelengths of light in unique ways, ar-
chaeological applications of SWIR imagery are rare, largely due to the low spatial resolution and
high acquisition costs of these data. Fortunately, a new generation of compact, drone-deployable
sensors now enables the collection of ultra-high-resolution (<10 cm), hyperspectral (>100 bands)
SWIR imagery using a consumer-grade drone, while the analysis of these complex datasets is now
facilitated by powerful imagery-processing software packages. This paper presents an experimental
effort to develop a methodology that would allow archaeologists to collect SWIR imagery using a
drone, locate surface artifacts in the resultant data, and identify different artifact types in the imagery
based on their reflectance values across the 900–1700 nm spectrum. Our results illustrate both the
potential of this novel approach to exploring the archaeological record, as we successfully locate and
characterize many surface artifacts in our experimental study, while also highlighting challenges
in successful data collection and analysis, largely related to current limitations in sensor and drone
technology. These findings show that as underlying hardware sees continued improvements in
the coming years, drone-acquired SWIR imagery can become a powerful tool for the discovery,
documentation, and analysis of archaeological landscapes.

Keywords: UAV; drone; multispectral; infrared; archaeological survey; hyperspectral; SWIR;
landscape archaeology

1. Introduction

Although archaeology is popularly associated with excavation, most archaeological
sites—the remnants of past settlements or other activities—are recognized by the presence
of artifacts and other features on the ground surface [1,2]. Beyond simply indicating the
location of buried remains, analysis of the distribution and type of the surface archaeological
record can offer evidence for the various periods of settlement at a given site; reveal the
ways in which space was utilized for agriculture, productive practices, or ritual; and
suggest patterns in the movement of people, things, and ideas across the landscape [3–8].
Fundamentally, most investigations of archaeological landscapes rely on our ability to find,
map, and interpret artifacts and features found on the surface [9,10]. Yet, while an emerging
suite of technological advances has transformed almost every aspect of contemporary
archaeological research, our strategies for locating and mapping humble surface fragments
of the past remain largely unchanged. Ultimately, archaeologists must walk slowly while
looking at the ground, noting the location of things observable to the human eye.

This paper presents our initial experiments to develop a new method for the documen-
tation and analysis of surface archaeological materials using drone-acquired, hyperspectral,
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short-wave infrared (SWIR) imagery. Many rocks, minerals, and soils that cannot be differ-
entiated based on how they reflect visible (450–700 nm) or near-infrared (700–900 nm) light
can be easily distinguished based on how they reflect longer wavelengths of SWIR light
(900–2500 nm). Relying on this principle, geologists commonly use multispectral SWIR
satellite imagery to locate and map areas with distinct lithologies. Theoretically, the same
approach could be used to identify and characterize surface archaeological features, from
architectural remains to individual artifacts. However, the low spatial resolution of existing
satellite sensors, combined with the large size and slow framerate of airborne SWIR sensors,
has made such an approach impractical until recently.

A new generation of drone-deployable sensors now offers the possibility of collecting
SWIR imagery with a spatial resolution of better than 10 cm that enables the discrimination
of hundreds of bands or channels, revealing detailed reflectance histograms of the ground
surface [11]. Moreover, drone surveys allow for the collection of imagery at a relatively low
cost and under optimal seasonal or ground-cover conditions. In principle, drone-acquired
SWIR imagery could therefore be used to identify individual surface artifacts or other small
features and to characterize these artifacts based on their reflectance properties, enabling
us to map the distribution of artifacts and features over vast areas of the landscape with
an efficiency and accuracy that has never before been possible. This paper presents our
first efforts, supported by a NASA Space Archaeology grant, to develop this potentially
transformative new approach to investigations of the archaeological landscape through a
controlled experiment. Results demonstrate the possibilities and challenges of this exciting
new technology, highlighting successes in locating and characterizing individual surface
artifacts, while also pointing to key areas for continued development.

2. Background

Geologists and other earth scientists have long relied on SWIR imagery derived from
Landsat and ASTER satellite programs to identify and characterize different types of
rocks, minerals, and soils across large areas of the landscape [12–20]. Collecting samples
of different rocks or minerals within a study area, it is possible to measure their SWIR
reflectance values in a lab setting to create a “library” of spectral profiles, each offering a
unique spectral fingerprint. Using remote-sensing classification tools, researchers can then
train software to identify any pixels within an image that correspond to these reflectance
values, with some limitations derived from the low spectral resolution of most public
satellite sensors (Figure 1).
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Figure 1. Ultra-violet, visible, and infrared light with approximate wavelengths in nanometers (nm).
The spectral range for sensors on Landsat 8, ASTER, and WorldView-3 satellites are illustrated, as
well as the range covered by the Resonon Pika IR+ used in this study.
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A handful of studies have similarly shown that despite its low spatial and spectral reso-
lution, SWIR imagery from public satellite sensors can be used to detect archaeological sites
and features due to the distinct ways in which anthropogenic soils or surface artifacts reflect
SWIR wavelengths. For example, ASTER SWIR imagery at a 30 m resolution has been used
to locate sites and roadways in northern Mesopotamia [21,22], map historical soil erosion
in southern India [23], and model resource procurement in the Andes [24]. Somewhat
higher-resolution (3.7 m) eight-band SWIR imagery from the commercial WorldView-3
satellite program has likewise been shown to be an effective tool for archaeological-site and
feature detection in the Middle East [25] and on Rapanui/Easter Island [26], but these data
are costly to acquire, and the effectiveness of this imagery is highly dependent on the timing
of data collection as it relates to localized ground cover. The prospects for the discovery
and mapping of archaeologically significant features using higher-resolution SWIR imagery
have been suggested by a handful of studies that have utilized aircraft-acquired data [27,28]
or used portable spectrometers to illustrate unique reflectance properties of archaeological
soils and surface artifacts [29–33]. However, these sensors are too large to be mounted on
drones, and conventional aircraft cannot fly low or slow enough to collect imagery at a
sub-decimeter resolution.

Archaeology has been revolutionized in recent years by the continuous advancement
of drone technology [3,34], and our research builds on these advances. Archaeologists now
commonly use visible-light images collected with inexpensive consumer drones for map-
ping archaeological sites and landscapes [35–37], and they are increasingly experimenting
with more sophisticated sensors to aid in site and feature detection, including multispectral
near-infrared imagery, thermal imagery, and lidar [25,38–44]. However, until recently,
commercially available SWIR sensors were too large to be carried by consumer-grade
drones, preventing experimentation with this potentially powerful tool for imaging archae-
ological landscape features. This study is the first to experiment with the archaeological
potential of ultra-high-resolution (<10 cm ground sampling distance [GSD]), hyperspectral
(>100 bands) SWIR imagery collected using a consumer-grade drone.

3. Materials and Methods

This project presents our experimental research using a hyperspectral, drone-deployed
SWIR sensor, undertaken as part of a larger project exploring applications of SWIR imagery
in archaeology [25]. Our goal was to determine whether it would be possible, given
current technological constraints, to collect SWIR imagery of sufficient spatial and spectral
resolution to recognize and characterize individual artifacts, including ceramics, stone tools,
and metals, as well as architectural and other surface remains. We further experimented
with various approaches to image analysis and classification in order to automate the
detection of individual artifacts. Below, we outline the technical details of the SWIR sensor,
the drone and hardware, survey mission planning, our experimental design, and our
approach to data processing.

3.1. Drone-Deployable SWIR Sensor

In developing our approach to this study, we evaluated all commercially available
SWIR sensors that have the potential for deployment on a drone. The best-quality airborne
SWIR sensors available today are far too heavy to be carried on a consumer-grade drone as
they are designed for deployment on piloted aircraft and are too costly for the budgetary
constraints of most archaeological research projects. Most lower-cost SWIR sensors are
used primarily in stationary lab settings and are not designed for aerial deployment. We
ultimately selected the Pika IR+, an aerial SWIR sensor developed by the Montana-based
firm Resonon, which collects up to 326 spectral bands in the 900–1700 nm spectral range,
with a spectral resolution of up to 5.6 nm [45]. We also considered the Headwall Micro-
Hyperspec SWIR sensor, which collects data in a longer spectral range (900–2500 nm) than
Resonon’s Pika IR+, but ultimately the significantly lower cost and more-compact size of
the Pika provided the best balance between cost, sensor size, and spectral resolution.
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The Resonon Pika IR+ is a pushbroom sensor, as are most SWIR systems, collecting
lines of data up to 640 pixels across. Because the image is formed by the forward movement
of the sensor, the resolution of the imagery is a product of the pixel resolution of individual
lines, the speed of the drone during data collection, the altitude of the sensor above the
ground, and the lens configuration. For aerial deployment, the Pika IR+ sensor is mounted
on an aluminum frame, connected to a small flight control computer, a solid-state hard
drive for data collection, and a survey-grade Ellipse N IMU. The IMU receives GNSS
(GPS) input from an external GPS puck, and the entire system is powered by an external
LiPo battery.

Initially, we sought to collect imagery at a very fine resolution (<4 cm ground sampling
distance [GSD]), which pushes the practical limits of most SWIR sensors available today.
In order to collect high-quality data that are relatively free of noise or interruptions, the
sensor requires maximal light reflection off the ground surface. SWIR wavelengths carry
far less energy than shorter-wavelength visible or NIR light, which makes it difficult to
produce high-resolution sensors that collect data at very high framerates. In order to
achieve the highest resolution possible, SWIR surveys must be conducted under optimal
lighting conditions, ideally near solar noon, on a day free of clouds or atmospheric haze.
In field settings, these conditions cannot always be met, but we found that attempting
data collection on fully overcast days did not result in useful data as the low framerate
required for those conditions necessitated a flight speed and height that were untenable
for achieving high spatial resolution. As a rule, the greater the intensity of solar surface
reflection, the higher the resolution and cleaner the SWIR data it is possible to collect.

Resonon’s software interface enables users to customize both the framerate and the
number of spectral bands that the sensor will collect, and reducing both of these parame-
ters will increase the signal and reduce noise, thereby producing higher-quality spectral
data. Choosing the best data collection parameters is a balance between framerate, drone
altitude, and speed, and the optimal parameters vary depending on the field conditions. A
slower flight speed allows for a longer integration time (i.e., exposure), which increases the
signal-to-noise ratio (SNR) of the data and is particularly important under lower illumi-
nation conditions [46]. However, a slower framerate results in coarser along-track spatial
resolution, which requires a decrease in drone speed in order to offset this decrease and
maintain sufficient spatial resolution. Similarly, higher framerates result in finer along-track
resolution, which then necessitates a decrease in flight altitude in order to decrease the
cross-track resolution and maintain an aspect ratio of at least two [47]. Balancing the
framerate, flight speed, and flight altitude is key to a successful mission. In our surveys,
we sought to collect imagery with the highest spatial resolution possible, ideally at a 3 cm
GSD, in order to differentiate individual surface artifacts. We experimented with many
different settings and found that on a clear day under optimal field conditions, the most
effective framerate is usually 40–60 frames/second, with the drone flying 30–40 m AGL at
0.5–1.5 m/s. However, the actual GSD often ends up coarser than predicted by the flight
planning software due to noise in the data caused by flight instabilities and spectral noise.

3.2. Drone and Mission Planning

For our experimental surveys, we mounted the Resonon Pika IR+ on a DJI Matrice
600 Enterprise-grade hexacopter (Figure 2). The DJI M600 is an aging drone model, orig-
inally released to consumers in 2016, and as such, it lacks many of the performance,
hardware, and software upgrades of more recent drones. It nonetheless remains one of
the only consumer drones capable of lifting the Pika sensor package, which weighs 4.3 kg
(9.47 lbs) with all batteries, cables, and peripherals (a newer model of the Pika sensor
released in 2023 is only 2.7 kg and thus can be flown on newer drone models like the
DJI M300 or M350). For our surveys, we secured the Pika’s aluminum frame to a Ronin
gimbal mount that attaches to the M600’s payload bars. The flight control computer and
sensor require an external LiPo battery, which we mounted in a custom box attached to
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the airframe. We also attached an extra GPS antenna mast to the top of the airframe and
mounted a GPS puck that delivers location data to the Pika’s IMU.
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Figure 2. Resonon Pika IR+ sensor mounted on a DJI Matrice 600 drone (left); drone in flight during a
survey near Mesa Verde, Colorado (right). The SWIR sensor requires numerous custom modifications
to the drone, and its large size and weight restrict flight times to 13–15 min.

Planning surveys for SWIR data collection using any currently available commercial
sensor is considerably more complex than with sensors that are integrated into drone
hardware. Users first plan survey areas of interest (AOIs) in a GIS or Google Earth and
then upload a KMZ file with this AOI into the Pika IR+ flight control computer using a
USB-cabled interface. In theory, the sensor is then programmed to begin data collection
whenever it enters the AOI. In order to collect multiple, adjacent lines of data, the flight plan
must include enough overshoot past the edge of the AOI so that the sensor does not record
during turns. Because each transect is processed independently (see below), pushbroom
SWIR surveys do not require significant sidelapping, so we usually plan on 10–15%. Using
swath width estimates from Resonon’s flight planning software, users manually calculate
the appropriate amount of overlap between transects. However, because the SWIR sensor
is un-gimbaled, wind gusts can cause the drone to roll during transects, resulting in gaps
in coverage if transects do not have sufficient sidelapping coverage.

In order to achieve the desired image resolution of a 3–4 cm GSD with our 25 mm lens,
we conducted surveys at 30–55 m above ground level, at around 1 m per second—a speed
that can feel agonizingly slow. See Table 1 for the flight parameters used in the experiment.
With the heavy payload of the Pika sensor, we found that the M600 could only fly for
13–15 min, depending on wind and weather conditions. In addition, prior to beginning
a survey, the drone must perform a figure-eight series of turns in order to calibrate the
IMU, which ideally should be conducted at faster airspeeds to conserve battery. In order
to accommodate these complex mission planning requirements, we used the Universal
Ground Control Station (UgCS) mission planning application, as it enables users to change
the drone speed, orientation, turn type, and altitude at each waypoint [48]. However, to
execute a flight in the field, the software requires both the drone remote controller and a
laptop, connected by an external WiFi network—this is a challenge in field settings, as we
found with previous lidar surveys using the M600 [41].
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Table 1. Flight parameters and sensor settings used during experimental data collection.

Parameter Flight Configuration

Elevation AGL (m) 28
Nominal Ground Speed (m/s) 1

Swath Width (m) 13
Side Distance (m) 5

Overshoot 8 m at 4 m/s
Theoretical GSD (cm) 1.7

Wavelength range (nm) 900–1700
Cross track pixels 640

Number of Spectral Bands 336
Frame Rate (Hz) 60

3.3. Experimental Design

In order to test the viability of ultra-high-resolution SWIR imaging in archaeology,
we designed a simple experimental survey that would enable us to determine how ef-
fectively the Resonon Pika IR+ sensor could be used to locate and characterize artifacts.
We first created faux artifacts intended to mimic common types of materials encoun-
tered on archaeological sites. These included (1) dark-grey/black dacite chert flakes,
(2) white novaculite chert flakes, (3) red mahogany obsidian flakes, (4) black obsidian flakes,
(5) glazed whiteware ceramic sherds from un-provenienced historical New England col-
lections, (6) plain redware ceramic sherds produced from replica ancient pottery, (7) pure-
copper sheet-metal squares, (8) galvanized-steel sheet-metal squares, and (9) fired brick
fragments from a 19th-century building foundation (Figure 3). We created two size cate-
gories of faux artifacts: a larger version measuring 5–7 cm in diameter and a smaller version
at ~3 cm in diameter.
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Figure 3. Artifact types used in this experiment include (from upper left): (1) black/dark-grey dacite
chert flakes, (2) white novaculite chert flakes, (3) red/mahogany obsidian flakes, (4) black obsidian
flakes, (5) glazed whiteware ceramic sherds, (6) plain redware ceramic sherds, (7) copper sheet-metal
squares, (8) steel sheet-metal squares, and (9) fired brick fragments from a 19th-century building
foundation.
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We selected a local baseball field for our experimental surveys (Figure 4) as this would
enable us to place artifacts on one area with grass and another area with an infield mix (a
mixture of sand, silt, clay, and fine gravel). We then arranged the faux artifacts in lines,
with two lines of two different sizes on each ground-cover type. We placed ground control
targets around the edges of the survey area and recorded precise XYZ locations of the
targets using an Emlid Reach RS2 RTK survey system. A custom ground calibration panel
was placed in the AOI as a standard to convert the raw data into reflectance during data
processing. We recorded additional ground control points at the corners of the panel.
Finally, we collected high-resolution visible-light drone imagery of the survey area using
a DJI Mavic 2 Pro and produced 1 cm resolution orthoimagery of the survey area using
Agisoft Metashape. These data were exported to ArcGIS Pro for subsequent analysis.
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Artifacts were laid out, alongside a control reflectance tarp and ground control points, on both gravel
(infield) and grassy areas of a baseball diamond at Tenny Park, Hanover, NH.

We conducted surveys using the Pika sensor across numerous different days at this
same site, repositioning artifacts and control points each time. This enabled us to experi-
ment with many different imagery collection parameters, refining settings for the framerate
and spectral channels, as well as varying settings for the speed, altitude, and transect
spacing of the drone. Here we present the most effective parameters and arrangement.

We additionally explored the potential of a portable, low-cost SWIR spectrometer
for developing a spectral library of artifact samples that might aid in image classification.
We used a NirvaScan NIR-M-F1 (Allied Scientific Pro, Gatineau, QC, Canada), which has
a spectral range of 900–1700 nm and 228 bands, to collect SWIR reflectance data for all
the faux artifact types in our study. The samples were pressed against the sensor, which
includes a built-in halogen lamp with an 8 mm shield that blocks ambient light and ensures
a consistent distance between the sensor and the material. Each spectrum was an average
of 6 scans, and 30 spectra were acquired for each sample, with the sensor being moved for
each spectrum. The built-in reference spectrum for the sensor was used for all scans. After
exporting the reflectance data from NirvaScan, all processing was completed in Stata, and
the results were compared to spectral reflectance data from the Resonon aerial sensor.
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3.4. Data Processing and Classification

Once airborne SWIR data were successfully collected, we used Resonon’s Spec-
tronon software to process and analyze the data [47]. Hyperspectral data are commonly
recorded in the form of data cubes, which can store data in multiple dimensions, unlike
a two-dimensional table or a three-dimensional raster file. In Spectronon, first, the data
are converted to radiance and reflectance, then georectified, converted to first-derivatives,
and finally analyzed using several possible classification tools. Each flight transect is rep-
resented by a single data cube, with each data cube processed separately in Spectronon
before they are mosaiced together in ArcGIS Pro as the final step.

First, data are converted to radiance using the provided tools based on standard
conversion formulas and the imager calibration file that is specific to each sensor. Then
the radiance data are converted to reflectance using the dual-shade calibration panel as a
ground standard. The conversion to reflectance requires the precisely measured reference
spectrum of the panel (provided by Resonon) and the selection of a region of interest (ROI)
on the panel in the imagery, which allows the tool to compare the expected reflectance
values to the actual reflectance values of the calibration panel and then apply the calculated
corrections to the rest of the data cube. The last step before analysis is to convert the data
to first-derivatives using a Savitzky–Golay filter [49], which helps to smooth some of the
inherent noise while still maintaining the integrity of the data [47].

At any point in the processing workflow, the data can be geocorrected. By nature, the
spatial accuracy of pushbroom data is highly sensitive to the pitch of the drone, the stability
of the gimbal (or lack thereof), and the accuracy of the IMU [50]. Frequently, the data cubes
are quite difficult to interpret visually until after geocorrection. Spectronon’s GeoRectify
plugin uses IMU information from the survey, the mean elevation of the survey area, and
calculated physical offsets between the IMU and imager to spatially correct the data cube.
After georectification, the data cubes can then be exported as separate images and mosaiced
in ArcGIS Pro, as the native mosaicing tools in Spectronon are relatively simple.

Before undertaking image classification, we generated spectral profiles of different fea-
tures and experimented with different band combinations to determine which wavelengths
most effectively distinguish between the faux artifacts and the environment. Spectronon
includes a tool that allows the user to easily compare spectral profiles of different ROIs in
the image. In our first analyses of the SWIR imagery, we also experimented with differing
approaches to visualizing these complex datasets, assigning different spectral bands to
RGB channels in order to create basic band combinations in which most artifacts are visible
against both grass and gravel backgrounds (Figure 5).

After processing the data cubes, we undertook a supervised classification [51] of
the drone-based SWIR imagery in which we manually selected training samples that
represent each artifact type as well as vegetation and soil, and then employed one of
the numerous algorithms to automate the detection of other pixels that share a set of
similar reflectance values. In principle, this approach could be used on a large scale to
locate and identify artifacts across a large study region. Spectronon offers many different
classification algorithms, and there are other innovative approaches to improve the results
of classification appearing in the recent literature [52,53]. For an experiment at this scale
and with a small number of training samples, we chose the spectral angle mapper (SAM)
for its simplicity as well as its sensitivity to spectral shape and insensitivity to brightness,
which is especially important in datasets with variable illumination [17] First, we used it
as an exploratory tool to determine which materials were most easily distinguished from
the background, and then we performed a classification of the materials with the most
spectrally distinct angles. The SAM treats spectra as vectors in an N-dimension space,
where N is equal to the number of bands, and calculates the angle between these vectors. A
maximum angle threshold is specified for each class, and pixels are not classified when the
values of pixels are further away than that threshold. The pixel color in the classification
represents the best match for each pixel, while the pixel value is calculated as the spectral
angle divided by the threshold value to determine the class with the lowest value for a
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given pixel. After running the classification, we adjusted the thresholds for each class to
optimize the detection of the artifacts.
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4. Results

The results of our experimental efforts to locate artifacts are promising in many respects
but also highlight many of the challenges in operationalizing our larger goal of employing
this emerging new technology in archaeological field settings.

Pushbroom sensors like the Pika IR+ are highly dependent on the stability of the
aircraft, which can be a challenge even with a larger and more stable drone like the
M600 [11,50]. We found that the accuracy of the Pika’s onboard IMU was insufficient for
small survey areas and that Resonon’s relatively new RTK system for airborne deployment
was necessary to obtain acceptable quality location data. The RTK system communicates
via radios plugged into the Ellipse IMU on the aircraft and the Emlid Reach RS2 base station
and proved to be an effective way to obtain higher-accuracy locations for data collection
and georectification.

The effective deployment of the system to obtain high-resolution data hinges on
balancing a good signal-to-noise ratio with drone flight parameters that result in both
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high spectral and spatial resolution [50]. Field conditions other than clear sunny days are
particularly challenging as a lower framerate (and thus a slower flight speed and higher
flight altitude) is needed on overcast days. The presence of errant clouds can also completely
invalidate a flight line and require a repeated survey of the same area. Furthermore, the
framerate and flight settings should result in a cross, versus the along-track aspect ratio
of approximately two to counteract flight instabilities, which can require the user to make
compromises in the spatial resolution of the imagery.

Hyperspectral data can be noisy, especially if collected with a less-than-ideal signal-
to-noise ratio. We tried multiple approaches for dealing with noise, including taking the
first-derivative, removing noisy wavelengths prior to analysis, and collecting data at full
spectral resolution before averaging the bands during processing. Furthermore, each scan
line is processed separately, and we often observed significant differences in the reflectance
of the same object across data cubes. This is due to the bidirectional reflectance function of
the object (i.e., the angle of the sun relative to the position of the imager). To account for
reflectance differences across data cubes, we selected training samples from across all data
cubes before performing any supervised classifications.

Despite these challenges, our results are promising for the prospects of drone-based
SWIR imaging as an archaeological tool. The analysis of spectral plots for various artifact
categories as well as samples of bare earth and grass show that in some spectral ranges,
there is a large degree of convergence in reflectance profiles, while other wavelengths
reveal greater discrimination. Figure 6 illustrates the mean reflectance values for all artifact
categories in our experiment, in addition to green grass, dead grass, and bare earth back-
grounds. It is evident in all spectral curves that there is significant noise at the low and high
end of data collection (800–900 nm and >1650 nm), as well as around the 1350–1450 nm
range. This is because the weaker illumination at short and long wavelengths degrades the
signal, as well as because of atmospheric absorption in the mid-spectrum [46]. White- and
redware ceramics, as well as white chert, brick, and copper, all have quite distinct spectral
profiles that enable us to discriminate them from one another with relative ease. On the
other hand, black and red obsidian and black chert all have very low reflectance values
and appear similar to one another in their reflectance values across spectra. Furthermore,
these materials are also very close to the shape and values of the dark gravel and soil in
the infield mix, making these artifact types difficult to recognize in our data and likely
problematic to differentiate in a supervised classification.

We experimented with many different band combinations that would take advantage
of spectral ranges with the greatest differences among artifact categories and also between
background values to create visualizations in which artifacts appear. For example, white-
ware ceramics show a large spike in reflectance values around 960, 1360, and 1680 nm, with
gradually declining values across other spectra, whereas white chert, appearing similar
in visible spectra, has more modest peaks at 1350, 1440, and 1680 nm and otherwise flat
and lower values in other spectra. These kinds of differences across artifacts enable us to
enhance the visibility of different artifact types by toggling various band combinations, as
illustrated in Figure 5B,C.

Ultimately, however, a better approach when dealing with such a complex dataset is to
use supervised classification tools. Spectronon offers many different image-analysis func-
tions to aid in processing these hyperspectral data, and we experimented with many of them.
Processing data using a Savitzky–Golay filter [49] provides a smoothed, first-derivative im-
age that reveals the largest number of artifact types while retaining much of the underlying
spectral variability. We rely on this image as the basis for a supervised classification using
Spectronon’s spectral angle mapper (SAM) classification tool (Figure 7). The results of
this classification method successfully identified much of the plain redware (50%), glazed
whiteware (50%), and brick samples (75%) in both gravel and grass backgrounds (Table 2).
It was less successful at locating other artifact categories, finding only one of four copper
samples and no samples of white chert. Red and black obsidian and black chert were not
included in the classification as these materials were not visible in the image and thus
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training samples could not be created. Steel could not be distinguished from the soil/gravel
class using a SAM approach, so it was not included in the final classification.
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Figure 7. A classified SWIR image of the experimental plot shown in Figure 5, with numbers in the
figure corresponding to artifact type. In this case, we use a spectral angle mapper (SAM) classification
on the first-derivative image (Figure 5D), successfully plotting the location of numerous artifact types
including plain redware, glazed whiteware, white chert, and brick samples.

Table 2. Error matrix for spectral angle mapper (SAM) classification (see Figure 7).

Reference Data

Classified
Data Copper Brick Red

Ware
White
Ware

White
Chert Grass Soil Black

Obsidian
Red

Obsidian
Black
Chert Steel

Copper 1 3 2 1
Brick 2 1 1 2 7 3
Red Ware 2 1 2
White Ware 3 1
White Chert 1 1
Grass 3 1 1 1 91 1 2 2 2
Soil 35 2 2 2 1
Unclassified 10 3 1

Column Total 4 4 4 4 4 112 46 4 4 4 4

Overall Accuracy: 68.5% Kappa: 0.515

Although the classification accuracy for most artifact types was not high, the classifica-
tion did succeed in distinguishing artifacts from the grass and soil background reasonably
well. The SAM classification successfully located 41% of the artifacts in our study, which
is already a good result given that many of the artifacts are smaller than the final spatial
resolution of the imagery at a 4 cm GSD. If we consider only those artifact types that we
are able to recognize readily in SWIR data (white ceramics, red ceramics, brick, white chert,
and copper) the SAM classification does even better, locating 70% of the artifacts. On the
other hand, there are a number of false positives—areas of grass or soil were misclassified
as one of our artifact types in the SAM classification. These could be larger pieces of gravel
or stone, small pieces of trash, or even simply areas of the ground where reflectance off the
surface was not easily classified.

As discussed above, we also attempted to collect SWIR spectral plots of all the artifact
types in our experimental study using a handheld spectrometer, in hopes that these data
could be used to train a classification algorithm (Figure 8). In our study, we found that the
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reflectance values collected using our inexpensive portable SWIR spectrometer diverged
considerably from those recorded by the Resonon sensor during our experimental surveys;
this was due to the very different lighting conditions under which data were collected as
well as the presumed differences in the hardware of the two sensors. Additionally, the
extremely low and largely undifferentiated reflectance values in the entire 900–1700 nm
range for both metals and the darker faux artifacts in our study (black chert, obsidian, and
brick) suggest that these data may be less useful for the analysis of some artifact types.
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5. Discussion

The results of this first experiment with drone-based SWIR imaging in archaeology
show the potential of this technology to transform archaeological surveys and landscape-
based investigations more broadly, while also highlighting several key challenges in the
realization of this promise. Our experimental data indicate that several artifact types can
be readily distinguished in SWIR imagery of adequate resolution and that a supervised
classification algorithm can use training samples of known artifact types to plot the location
and type of other similar artifacts within a survey area. This basic demonstration of the
technology’s potential is highly significant and suggests that future experimentation and
the continued development of this approach are warranted.

However, our experiment shows that the current nascent state of UAV-borne SWIR
sensor technology makes it challenging to collect imagery at fine spatial resolution due
to the tradeoff between the sensor’s framerate and the drone’s speed and altitude. We
were able to achieve close to this goal, at a 4 cm GSD, and successfully use this to locate
and characterize artifacts; however, this was only by surveying under optimal lighting
conditions at an airspeed of less than 1 m/s. Clearly, the short duration of flights that
are possible with the heavy Pika IR+ mounted on an M600 would make the collection of
SWIR data at this resolution over a large area a logistical challenge. However, Resonon has
already released an improved version of the Pika SWIR sensor, the IR-L+, which is around
half the weight of the model used in this experiment, meaning it could be deployed on a
drone with a smaller max payload and longer flight time than the M600. The IR-L+ also
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includes higher spectral resolution, with 470 bands in the range of 925–1700 nm versus
the 336 bands of the older IR+ model. As improvements in the underlying SWIR sensor
technology continue in the future, SWIR surveys at the resolution we desire for artifact
identification will only become easier.

We should note, however, that even somewhat lower-resolution SWIR imagery, at
a 10–20 cm GSD for example, would be in line with the spatial resolution of most aerial
thermal data we have collected [40,42] as well as that of most terrestrial geophysics like
magnetometry, resistivity, or ground-penetrating radar [54]. While individual artifacts
would be difficult to identify at this lower resolution, it would offer a potentially powerful
prospection and mapping tool for other kinds of surface features, including architectural
remains, field systems, roadways, pits, ditches, or earthworks. All these features could
be manifested at the surface by differences in soil composition or by the incorporation of
exotic stones and building materials, making them good candidates for documentation
using SWIR imagery. Likewise, SWIR data could be used at lower resolutions to locate
areas of differing artifact surface density—a key tool for mapping past occupation [21] or
farming [55]. Even if we cannot identify individual artifacts, a sufficient concentration of
artifacts within a larger pixel will impact the overall reflectance values of that area of the
ground, enabling us to differentiate areas with greater or lesser artifact densities, as has
been demonstrated experimentally for low-resolution thermal imagery [56].

Our experiment also illustrates that some artifact categories, particularly those that
are very dark in color, are more difficult to identify in the data than others. In our analysis,
the dark-grey dacite chert and the black obsidian were consistently the most difficult to
pick out visually in band combinations and were also the least likely to be successfully
identified in a supervised classification. These materials tend to absorb more energy at all
wavelengths, and the shiny, planar surfaces of lithic debitage likely cause greater variation
in the bidirectional reflectance function of the material. On the other hand, even artifacts
with these issues of absorbtion and reflectance might be identifiable against a very light
background, such as quartz sands or salt flats. It is also possible that a SWIR sensor
with a broader spectral range, such as the 700–2500 nm range of the highest-end sensors,
might offer better results for these low-reflectance objects. Nonetheless, no survey method
will locate all archaeological materials with equal success, so simply being aware of the
variability in the effectiveness of SWIR data for different material types will help to target
the application of this powerful technology.

Our efforts to use a handheld spectrometer to measure the reflectance values of specific
artifacts did not produce results that were directly comparable to the spectral profiles of
the same artifacts recorded by the Resonon sensor. Geologists have employed handheld
spectrometers to create spectral libraries of the SWIR reflectance histograms for particular
types of rocks and minerals, and they subsequently use these data to interpret multispectral
satellite imagery or even train a classification [16,18,57]. Archaeologists have sometimes
similarly used handheld spectrometers for artifact analysis, primarily as a tool for sourcing
or identifying anthropogenic soils [29–33], and we hoped that this would enable the creation
of a spectral library of artifact types in our study. However, the lack of correspondence in
reflectance values between the two different SWIR sensors combined with the very-low
and nearly flat histograms for most dark-colored artifacts in our study makes handheld
spectrometer data difficult to utilize in our study. It would instead be preferable to record
the spectral profiles of known artifacts using the same sensor as employed in a survey, and
this would likely produce data that could be used to train a classification of artifacts across
a site. For example, we could conduct a small surface collection of artifacts following a
SWIR survey, identify key types of artifacts that are present on a given site, and then record
their reflectance profiles either by mounting the SWIR sensor on a bench or by laying the
artifacts out on a spectrally flat material and conducting a low-altitude survey with the
sensor on the drone.
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6. Conclusions

This paper has presented the initial results of an archaeological experiment designed
to test the feasibility of using a drone-deployed SWIR sensor to locate and characterize
surface artifacts and features. Although we encountered many challenges in executing
the experiment and the results are not a panacea, our findings nonetheless demonstrate
the potential for high-resolution, hyperspectral SWIR imaging in archaeology. Collecting
imagery of sufficient spatial resolution over a large enough area and recognizing all artifact
types against differing background values proved to be the greatest challenges. However,
these core difficulties are both technological problems for which we can expect improve-
ments to come soon. Resonon has already released a newer airborne SWIR sensor that
offers potentially higher-resolution imagery and can be deployed on a more reliable drone
with longer flight times, thereby improving both resolution and areal coverage. A key
competitor, Headwall, has similarly released a more-compact version of their SWIR sensor,
now small enough to mount on a consumer drone, offering spectral coverage from 900 to
2500 nm [58]. As these and other firms continue to develop underlying sensor technology
and drone capabilities continue to improve, we can anticipate that deploying SWIR sensors
in field settings will become easier and more productive in the near future.

The successful development and deployment of drone-based SWIR imaging could
have wide-ranging impacts on archaeological research and cultural heritage management.
In regions with high densities of surface artifacts, we could map their distribution with
a precision and scale never before possible, offering unparalleled insights into the extent
of ancient settlements, the differing densities of artifacts across space, and the variability
in the types of artifacts as a proxy for the dating and characterization of occupation. At
individual sites, we would be able to define habitation areas, refuse dumps, or areas of
industrial production activities. For sites with surface architectural remains or other similar
features, we could map their full extent rapidly, precisely, and non-destructively. At a
larger landscape scale, the method could reveal differing intensities of past agricultural
practice, possible sites for pastoral or nomadic activities, or specialized ritual centers. The
results of SWIR imaging can also be combined with other datasets, including those of
excavations, archaeological geophysics, or high-resolution topographic mapping to help us
better understand the character of ancient sites.

Archaeologists face an unprecedented challenge today as we strive to document
countless archaeological sites that are under enormous threats from the intensification
of agricultural land use [59–61], climate change [62,63], and looting or other forms of
intentional site destruction [64–66]. The speed and scope with which the archaeological
record is being lost demands that we develop new tools and methods to discover and docu-
ment sites and features more rapidly, both to preserve a record of the past and to support
local stakeholder communities and heritage management professionals tasked with the
preservation and protection of archaeological sites. SWIR imaging helps to address these
challenges by offering a powerful new tool for mapping archaeological sites and features
in a manner that has never before been possible, facilitating the discovery and documenta-
tion of surface archaeological features quickly, over large areas, non-destructively, and at
modest cost.
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