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ABSTRACT: Conventional techniques used to measure oil content in the food are laborious, rely on chemical agents, and have a
negative environmental impact. In this study, near-infrared hyperspectral imaging was used as a rapid and nondestructive tool to
determine the oil content and its distribution in commercial flat-cooked and batch-cooked potato chips. By evaluating various
algorithmic models, such as partial least-squares regression (PLSR), ridge regression, random forest, gradient boosting, and support
vector regression, in combination with preprocessing methods like multiplicative scattering correction, standard normal variable
(SNV) transform, Savitzky−Golay filtering, normalization, and baseline correction, the most effective preprocessing method and
model combination was determined to be SNV-PLSR. Moreover, by employing the optimized PLSR model, a highly accurate oil
content prediction model was developed, achieving a coefficient of determination (R2) of 0.95. To identify the wavelengths that
contributed most significantly to the model’s predictive power, variable importance in projection (VIP) analysis was utilized. A
dimensionally reduced PLSR model using only 68 selected wavelengths was developed based on the VIP analysis. This simplified
model maintained similar performance to that of the full-spectrum model while using a smaller data set. The model was also used to
apply the hyperspectral images of potato chips at the pixel level to visualize the oil distribution in potato chips with the intent to
provide a real-time approach to quality control for the potato chip industry.
KEYWORDS: hyperspectral imaging (HSI), potato chips, oil content distribution, nondestructive testing, machine learning (ML),
food quality control

1. INTRODUCTION
Potato chips, one of the most popular snacks across the world,
had a global market size of $33.3 billion in 2022 and will
potentially reach $40.0 billion in 2028.1 It appeals to
individuals of all ages, and its popularity is mostly attributed
to its distinct flavor and convenient use.2 Despite its popularity,
the high oil content of potato chips, which contributes to
almost 60% of their calories, causes health concerns including
heart disease and obesity that are related to oil consumption.3

Under the current trend toward healthy diets, it is important
for the food industry to provide products with low oil content
in response to market demand.4 However, lowering the oil
content in potato chips has been challenging due to the
complex physical process of oil transportation during the frying
process. The oil content in each piece of potato chip could also
be affected by the potato chip size, thickness, frying time, oil
temperature, chip pore characteristic, bulk density, and
porosity,5 resulting in high variability piece to piece. Therefore,
the snack food industry has been looking for a nondestructive
and real-time approach to monitor the oil content in potato
chips to ensure consistency of product quality.
Soxhlet extraction and gas chromatography are traditional

methods to determine the total lipid content of food products,
but those analytical techniques can only be used on a
laboratory scale and are time-consuming, destructive, and
involve toxic and expensive chemical solvents,6 which are not

feasible for real-time monitoring of oil content in production
lines.7 To date, nondestructive and real-time monitoring
technologies have been focused on near-infrared (NIR)
spectroscopy, Raman spectroscopy (RS), Fourier-transform
infrared (FTIR) spectroscopy, and hyperspectral imaging
(HSI).8,9 Among these methods, NIR, RS, and FTIR probe
spectral information from a single point,10 and they are
incapable of analyzing spatial component distribution and
heterogeneity to detect regional quality and safety issues such
as molding, hygroscopicity, and oxidation.11 Attributed to the
capability of capturing spectral information at every pixel, HSI
has been utilized in various food products including soybeans,
rapeseed, and beef as a rapid and nondestructive for chemical
and physical properties’ analysis.12−15 Despite HSI’s promising
features, challenges include large data volumes, spectral peak
shifts, unstable output, and slow speed.10,16,17 High-dimen-
sional data sets can be difficult to manage and process
efficiently, leading to increased computational complexity and
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hindering real-time decision-making.18 The high dimension-
ality of HSI data can also lead to collinearity, redundancy, and
the presence of irrelevant or noisy variables, negatively
impacting traditional data analysis methods and reducing the
efficiency of quality prediction models.19

Combining HSI with preprocessing approaches and machine
learning techniques offers a promising approach to address
these limitations. Machine learning algorithms, such as partial
least-squares regression (PLSR), support vector machines, and
artificial neural networks, can effectively handle high-dimen-
sional data and extract relevant features from the spectral
information.20 For instance, SVR has been successfully applied
for predicting the quality of coffee and chicken meat,21,22

random forest (RF) has demonstrated excellent performance
in predicting carbonization characteristics of kraft lignin-
derived hydrochar23 and soil nitrogen and carbon measure-
ments,24 and SVR was effective in predicting crude protein
content of alfalfa.25 While some of these methods may be
considered “black box” approaches due to their complex
internal workings, their performance and suitability for various
applications have been well-established through extensive
research. Comparing linear and nonlinear methods allows for
assessing the trade-off between model complexity and
performance in predicting oil content in potato chips using
HSI.
Despite the potential of HSI and machine learning

algorithms in food quality assessment, limited studies have
focused on estimating the oil content and distribution in
potato chips. This study aims to address this gap by optimizing
an HSI system for data collection, developing a preprocessing
pipeline and comparing various machine learning models for
predicting oil content in potato chips (Figure 1). The most
robust model was identified, and its hyperparameters were
tuned for optimal prediction accuracy. Finally, the model was
applied to visualize the oil distribution in potato chips through
pixel-by-pixel image reconstruction. This approach provides a
comprehensive framework for utilizing HSI and machine

learning to assess oil content and distribution in potato chips,
contributing to the advancement of nondestructive quality
control methods in the food industry.

2. MATERIALS AND METHODS
2.1. Materials. Nine different Potato Chips with different flavors

were purchased through conventional retail channels, either local
grocery stores (Hampton, VA, USA) or online shopping platforms
(Amazon.com) as presented in Table 1. A total of 224 potato samples
without visible damage or irregular shape were selected. The oil
content of the selected products was calculated based on their
nutritional labels. Hexane was obtained from Thermo-Fisher USA.
Two types of Potato Chips have been used for this study, flat-cooked
potato chips (conventional processing) and batch-cooked Potato
Chip (kettle processing). The batch-cooked potato chips have been
recently adapted by the industry in producing Potato Chips with
reduced fat. Intact potato chips weighing between 0.5 and 2 g were
used.
2.2. Determination of Total Oil Content. The oil content of

potato chips was determined following a method described by
Kadamne and Proctor.26 Briefly, 224 pieces of potato chips (1.5−2 g)
were weighed and recorded as w1 (g). The potato chip was crushed
and then placed into 50 mL conical centrifuge tubes (Corning
Incorporated, Tewksbury, MA, USA) to mix with 30 mL of hexane.
The solvent and chip mixture was then centrifuged at 5000 rpm for 10
min (Eppendorf, 5430, Hamberg, Germany), and the supernatant was
decanted after centrifugation. The potato chips remaining in the
centrifuge tube were placed in a chemical hood overnight until they
reached a constant weight, w2. The weight difference before and after
the oil extraction will be used to calculate the total oil content (1).

w w
w

Total oil content (%) 100%1 2

1
= ×

where w1 is the weight of the sample before hexane extraction and w2
is the weight of the sample after hexane extraction.
2.3. Spectral Acquisition. The spectra and images related to

potato chips were acquired by using a line-scanning hyperspectral
camera (Pika IR+. Resonon, MT, USA), covering the spectral range
from 900 to 1700 nm (NIR to SWIR) with a spatial resolution of 640
pixels and a spectral resolution of 2.3 nm (344 spectral wavelengths in
total). The hyperspectral camera was equipped with SpectrononPro

Figure 1. Process of HSI for predicting oil content in potato chip samples.
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(64bit, version 3.411) software for data and image collection, control
of travel speed, and cube data processing. Dark/white correction was
performed prior to the image collection. The dark chromatic reference
was obtained by masking the camera with a lens cap, while the white
reference was obtained with Spectralon standard material. The
hyperspectral camera was configured with a scanning speed of 1.19
cm/s, a frame rate of 81.94 frames per second, and an integration time
of 9.94 ms. Each hyperspectral image is a volumetric image cube with
400 × 640 pixels (x-dimension and y-dimension) and 334 spectral
wavelengths (λ/z-dimension) in order to store spatial and spectral
information about the sample.
2.4. Spectral Preprocessing. Before model construction,

preprocessing of the average spectrum of all pixels within the
identified region of interest (ROI) is necessary to reduce noise, light
scattering, and other undesirable effects in the spectrum.27 Commonly
used preprocessing techniques include baseline correction, normal-
ization, standard normal variable (SNV), multiplicative scattering
correction (MSC), and Savitzky−Golay (SG) smoothing. Among
these techniques, SNV and MSC are particularly effective in removing
additive and multiplicative light scattering effects from inhomoge-
neous sample surfaces.28 The preprocessing of all spectral images was
performed in Python 3.11 in a Spyder 5.4.3 environment.
2.5. ROI Identification. To eliminate noise, remove redundant

background, reduce boundary blur, and extract useful spectral
information, we performed image segmentation. To extract the
spectrum of each potato chip, a mask was generated under the
maximum background discriminant metric using the Otsu threshold
algorithm and morphological processing.29 This process isolated the
potato chips and generated an image containing only potato chips,
avoiding any background interference. The pixels in the mask were
then defined as ROIs, and the spectral data of these ROIs were
extracted from the calibrated hyperspectral images. Through this
segmentation technique, images were divided into various ROIs with
similar properties, including nonredundant features that provide
meaningful data.30

2.6. Data Modeling. 2.6.1. Chemometrics. Description and
features of five different machine learning regression models, namely,
ridge regression (RR), RF, gradient boosting (GB), PLSR, and
support vector regression (SVR) are presented in Table 2. Model
building and hyperparameter tuning were performed using grid search
for each of the five models.31 The grid search technique involves
defining a range of values for each hyperparameter and exhaustively
evaluating all possible combinations to identify the optimal set of
hyperparameters that yield the best model performance. The grid
search was performed using a 5-fold cross-validation approach on the
training set to ensure the robustness of the selected hyperparameters
and to avoid overfitting. The best-performing hyperparameters for
each model were then used to train the final models on the entire
training set and evaluate their performance on the independent test
set.
2.6.2. Model Evaluation. HSI spectroscopy (344 bands) was used

to predict the oil content of the different potato chips. To evaluate the
model, the data set (224 potato chips) was randomly divided into an
80% calibration set and a 20% validation set. The data were split using
the “train test split” function in the Sklearn model. To verify the
representativeness of the random sampling method, multiple splits
using different random states were performed, and the consistency of
model performance across these splits was checked. To avoid
overfitting and optimize the model performance, the cross-validation
method was used to analyze the calibration set and determine the
ideal number of latent variables. In the process, the root-mean-square
error (RMSE) was first calculated based on the cross-validation set,
and then the most suitable number of PLSR factors was selected from
the minimum RMSE. Next, external validation of the test set was
performed to assess the model’s predictive ability by calculating the
predictive correlation coefficient, RMSE of prediction, and residual
prediction deviation. The R2 and RMSE values will be used as the key
to determine the model prediction performance.32

2.6.3. Variable Importance Projection. Variable Importance in
Projection (VIP) is a measure used to assess the importance of eachT
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variable (wavelength) in the PLSR model.33 VIP scores summarize
the contribution of each variable to the model, taking into account
both the explained variance in the response variable (fat content) and
the explained variance in the predictor variables (spectral data).
Variables with higher VIP scores are considered more important for
the model’s predictive ability. VIP calculates the significance of each
wavelength by using the VIP score, as shown in eq 1.

a
VIP

( SS )

SS
i

n
N

in n

n
N

n

1
2

1

=
·=

= (1)

In the equation, VIPi represents the VIP score of the ith variable,
where a is the number of input variables, N is the number of latent
variables, ωin is the weight of the ith input on the nth latent variable,
and SSn is the sum of squares of the nth latent variable.33

In this study, VIP scores were calculated for each wavelength using
the optimized PLSR model. Wavelengths with VIP scores greater than
1 were considered important, as they contribute more than the
average variable to the model’s predictive ability. The stability of the
VIP scores was tested for different random states. Once the important
wavelengths are identified, a simplified PLSR model will be developed
by using the selected wavelengths.

3. RESULTS AND DISCUSSION
3.1. Sample Characteristics. Oil content in each single

piece of potato chip was determined by the methodology from
the literature.26 As expected, a large piece-by-piece variation in
oil content was found for all of the potato chip brands. The
average oil content varied from 8.13 to 25.66% among different
products. A histogram of 224 pieces of potato chips from nine
products is shown in Figure 2a, which indicates that the data
were somewhat normally distributed. The most common range
of oil content was between 10 and 15%. The wide distribution
of oil content across each piece of potato chips was expected
due to the nature of fried food products, and it also provides a
wide range of training and testing data sets for this study. The
results of each potato chip product (Figure 2b) agreed well
with the oil content calculated from the nutritional labels.
3.2. Preprocessing. The HSI image data of each potato

chip were collected before chemical analysis. A list of
preprocessing algorithms was deployed to improve the data
quality, including MSC, SNV, SG, baseline correction, and
normalization. Table 3 shows a comparison of different
preprocessing methods on the preliminary fitting results
using the PLSR model (N = 10) as the universal fitting
algorithm to simplify the comparison. The results demonstrate
that SNV preprocessing yielded the best performance, with a
high coefficient of determination (R2) of 0.841 for the training
data set (n = 179) and 0.863 for the test data set (n = 45),
along with a low mean absolute error (MAE) of 0.029 and
0.026, respectively. Therefore, SNV was chosen as the standard
preprocessing method for this study in the downstream
machine learning tasks.
The effect of SNV preprocessing on the average spectra of

the 224 potato chip samples indicated excellent consistency in
scaling the spectra (Figure 3). Distinct features in characteristic
peaks presented in the postprocessing spectra are in agreement
with the literature.34 Based on the chemical composition
characteristics of the potato chip samples, absorption peaks,
and valleys were observed in the spectrum with the main
strong bands at the 950, 1100, 1200, 1450, and 1700 nm. The
absorption near 1200 nm (C−H) is related to the oil content,
and the presence of a wide absorption band near 1220 nm may
be due to the secondary overtones of C−H and CH�CH
stretching vibrations in the oil.35 The absorption (−OH) nearT

ab
le

2.
D
es
cr
ip
tio

ns
an

d
Fe

at
ur

es
of

Fi
ve

D
iff
er
en

t
M
ac
hi
ne

Le
ar
ni
ng

R
eg

re
ss
io
n
M
od

el
sa

m
od
el

eq
ua
tio
n

de
sc
rip
tio
n

fe
at
ur
e

re
fe
re
nc
es

PL
SR

X
TP

E

Y
TQ

F,
T T

=
+

=
+

T
is
th
e
la
te
nt
co
m
po
ne
nt
m
at
rix
,P

T
an
d
Q

T
ar
e
th
e
lo
ad
in
g
m
at
ric
es
,E

an
d
F
ar
e

th
e
re
sid
ua
lt
er
m
s

PL
SR

is
w
id
el
y
us
ed

as
a
st
an
da
rd

ch
em

om
et
ric

te
ch
ni
qu
e
fo
r
pr
ed
ic
tiv
e

an
al
ys
is
of
sp
ec
tr
al
da
ta

44

RR
k

x
x

kI
x

y
k

(
)

(
)

,
0

1
=

+
Ii
s
th
e
id
en
tit
y
m
at
rix

an
d
k
is
th
e
rid
ge

pa
ra
m
et
er
.x

′x
is
eq
ui
va
le
nt
to
ad
di
ng

th
e

va
lu
e
of

k
to

th
e
di
ag
on
al
el
em

en
ts
of

x′
x

RR
ad
ds

ne
w
fa
ct
or
s
to
th
e
le
as
t-s
qu
ar
es
ob
je
ct
iv
e
to
re
du
ce

th
e
ov
er
fit
tin
g

as
so
ci
at
ed

w
ith

lin
ea
r
re
gr
es
sio
n

45

RF
m

x
M

m
x

(
)

1
(

)
j

j
=

m
j
is
a
tr
ee

es
tim

at
or
,M

is
a
tu
ni
ng

pa
ra
m
et
er

RF
m
od
el
ca
n
be

in
te
gr
at
ed

to
le
ar
n
an
d
pr
oc
es
s
co
m
pl
ex

sy
st
em

s
fo
r

effi
ci
en
t
an
d
ac
cu
ra
te
pr
ed
ic
tio
n

46

G
B

f
x

b
x

(
)

(
;

)
mM

jm
jm

1

=
=

b(
x;

τ jm
)
is
a
w
ea
k
pa
ra
m
et
er
.τ

an
d

β j
th
e
co
effi

ci
en
to
ft
he

jw
ea
k
le
ar
ne
r.

β j
m
an
d

τ jm
ar
e
as
an

ad
ap
tiv
e
fa
sh
io
n
(c
an

im
pr
ov
e
th
e
da
ta
fid
el
ity
)

G
B
is
ba
se
d
on

th
e
fa
ct
th
at
it
is
po
ss
ib
le
to

co
ns
tr
uc
t
gr
ad
ie
nt
-o
rie
nt
ed

le
ar
ne
rs
in
a
sh
or
t
tim

e
to

ob
ta
in
go
od

re
su
lts

47

SV
R

f
x

x
w

c
(

)
(

)
=

+
x
is
a
va
ria
bl
e
ve
ct
or
,ϕ

is
th
e
no
nl
in
ea
rf
un
ct
io
n,

w
is
th
e
w
ei
gh
tv
ec
to
r,
an
d
c
is
a

co
ns
ta
nt

SV
R
ca
n
be

ap
pl
ie
d
to

m
in
im
iz
e
st
ru
ct
ur
al
ris
k
to

en
su
re
th
at
th
e
gl
ob
al

op
tim

um
is
ac
hi
ev
ed

an
d
ge
ne
ra
liz
at
io
n
er
ro
rs
ar
e
re
du
ce
d

48

a
Ab

br
ev
ia
tio
ns
:r
eg
re
ss
io
n
(R
R)
,r
an
do
m
fo
re
st
(R
F)
,g
ra
di
en
t
bo
os
tin
g
(G

B)
,p
ar
tia
ll
ea
st
sq
ua
re
s
re
gr
es
sio
n
(P
LS
R)
,a
nd

su
pp
or
t
ve
ct
or

re
gr
es
sio
n
(S
V
R)
.

ACS Food Science & Technology pubs.acs.org/acsfoodscitech Article

https://doi.org/10.1021/acsfoodscitech.4c00196
ACS Food Sci. Technol. 2024, 4, 1579−1588

1582

pubs.acs.org/acsfoodscitech?ref=pdf
https://doi.org/10.1021/acsfoodscitech.4c00196?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


1450 nm was reported to be attributed to moisture.36 The data
suggest that the spectral features in this region are highly
informative for predicting the oil content in potato chips. The
prominence of these absorption bands highlights the
importance of the NIR spectral region in capturing the
chemical composition of the samples, particularly the oil-
related compounds. The successful application of SNV
preprocessing in enhancing the spectral data quality and the
identification of key absorption bands related to oil and
moisture content demonstrates the potential of HSI as a rapid
and nondestructive tool for analyzing the chemical composi-
tion of potato chips. Through the SNV preprocessing, the data
quality was improved, and the strong correlation between the
spectral features and the chemical properties of interest lay a
solid foundation for the development of robust prediction
models using advanced machine learning techniques.

3.3. Comparison of Five Common Machine Learning
Algorithms in Fitting the Sample. Five different regression
models, namely, RR, RF, GB, PLSR, and SVR, were compared
for their performance in predicting the oil content of potato
chips based on the HSI data. The data set, consisting of 224
potato chip samples, was randomly divided into a training set
(80%) and a testing set (20%) to evaluate the models’
predictive capabilities.
Table 4 presents the best predictions for each learning

method with different parameter settings. PLSR demonstrated
the highest R2 values among the models, indicating its superior
performance in fitting the data. With 15 components, PLSR
achieved an R2 of 0.9243 for the training set and 0.8280 for the
testing set, along with the lowest RMSE values of 0.0297 and
0.0352, respectively. The optimized full-wavenumber PLSR
effectively captures the linear relationship between the near-
infrared spectral data and the oil content in potato chips,
enabling an accurate prediction of the relative oil content.
These findings suggest that PLSR is a powerful tool for
extracting relevant information from the spectral data and
building a robust predictive model for oil content estimation.
RR also showed promising results, with the best perform-

ance observed when the regularization parameter (alpha) was
set to 10. Under this setting, RR obtained an R2 of 0.9843 for
the training set and 0.8109 for the testing set, with
corresponding RMSE values of 0.0168 and 0.0358. The
relatively high performance of RR indicates that the
regularization technique effectively mitigates overfitting and
improves the model’s generalization ability, yet the significantly
higher R2 and lower RMSE in the training data set than the
testing data set suggest a slight overfitting. RF and GB
exhibited moderate performance compared to PLSR and RR.
The best results for RF were obtained with 100 estimators,
achieving an R2 of 0.9303 for the training set but only 0.5428
for the testing set. Similarly, the GB with 300 estimators
reached an R2 of 0.8964 for the training set and 0.5714 for the
testing set. The discrepancy between the training and testing
performance suggests potential overfitting issues with these
ensemble models. While they can capture complex relation-
ships in the training data, their generalization ability may be
limited, leading to suboptimal performance on unseen data.
SVR had the lowest performance among the compared models,
with the best results obtained using a cost parameter of 10.
Even with this setting, SVR only achieved an R2 of 0.6445 for
the training set and 0.6136 for the testing set, indicating its
limited predictive power for this specific data set. The inferior
performance of SVR compared to other models may be
attributed to its sensitivity to the choice of kernel function and
the difficulty in optimizing its hyperparameters for this
particular application.

Figure 2. Oil content in potato chips. (a) Histogram of total oil
content in potato chips. (b) Total oil content of potato chips of
different products determined by chemical method (each error bar is
constructed using standard deviation from the mean).

Table 3. Comparison of Different Pre-Processing Algorithms on the Preliminary Fitting Resultsa

preprocessing PLSR component number training R2 testing R2 training MAE testing MAE training RMSE testing RMSE

raw 10 0.849 0.819 0.028 0.030 0.036 0.041
MSC 10 0.833 0.825 0.030 0.029 0.037 0.040
SNV 10 0.841 0.863 0.029 0.026 0.036 0.036
SG 10 0.825 0.859 0.027 0.026 0.034 0.036
normalized 10 0.855 0.839 0.028 0.031 0.036 0.039
baseline corrected 10 0.847 0.828 0.029 0.029 0.037 0.040

aAbbreviations: multiplicative scattering correction (MSC), standard normal variable transform (SNV), Savitzky−Golay (SG), mean absolute error
(MAE), root mean squared error (RMSE).
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Based on these results, PLSR emerged as the most suitable
model for predicting the oil content of potato chips using HSI
data. Its high R2 values and low error metrics demonstrate its
ability to effectively capture the underlying relationships
between the spectral features and the oil content while
maintaining a good generalization performance on unseen
data. The success of PLSR can be attributed to its ability to
handle high-dimensional spectral data, its robustness to
collinearity, and its effectiveness in extracting latent variables
that maximize the covariance between the spectral features and
the response variable (oil content). The comparative analysis
of different regression models highlights the importance of
selecting an appropriate algorithm that aligns with the
characteristics of the data and the problem at hand. While
PLSR and RR showed superior performance in this study, it is
essential to consider the trade-offs between model complexity,
interpretability, and computational efficiency when deploying
these models in real-world applications. Further research may
explore the integration of feature selection techniques or the
incorporation of domain knowledge to enhance the interpret-
ability and scalability of the predictive models for oil content
estimation in potato chips.
3.4. Hyper Tuning of the PLSR Model. The relationship

between the performance of the PLSR model and the number
of latent variables (number of components) is shown in Figure
4. Figure 4a shows the fitting performance as the number of

components increases, the RMSE of the testing data set first
decreases significantly, reaching a minimum at 14 components,
and then increases. The trend is consistent with the R2 plot
using the training data set, which suggests that the model is
best performing at n = 14, while incorporating too many
components (>14) may lead the model to overfit or increase
its complexity without further improving its performance.
The hypertuned PLSR model, with the optimal number of

components, achieved an exceptional R2 value of 0.95 when
fitted to the test data set. This high R2 value indicates the
model’s robustness and its ability to accurately predict the oil
content of potato chips based on the HSI data. The close
distribution of data points around the best-fit line in the
scatterplot, without systematic deviations or obvious outliers,
further confirms the stability and accuracy of the model at
different levels of oil content. The outstanding performance of
the optimized PLSR model can be attributed to several factors.
First, PLSR is particularly well-suited for handling high-
dimensional spectral data, as it projects the original variables
into a lower-dimensional space of latent variables that
maximize the covariance between the predictors and the
response variable. This dimensionality reduction technique
effectively captures the most relevant information from the
spectral features while mitigating the effects of collinearity and
noise.37 Second, the rigorous optimization process, involving
the selection of the appropriate number of components

Figure 3. SNV transform preprocessing of HSI spectra of potato chips. (a) Raw spectrum and (b) SNV-processed spectra.

Table 4. Screening of Machine Learning Models for Oil Content Predictiona

model parameters training R2 test R2 training MAE test MAE training RMSE test RMSE

PLSR latent variables 5 0.7783 0.7540 0.0382 0.0349 0.0490 0.0459
10 0.8794 0.8494 0.0285 0.0303 0.0365 0.0410
15 0.9243 0.8280 0.0230 0.0252 0.0297 0.0352

RR alpha 0.1 0.9971 0.7201 0.0016 0.0394 0.0057 0.0511
1 0.9958 0.7517 0.0062 0.0329 0.0091 0.0439
10 0.9843 0.8109 0.0128 0.0273 0.0168 0.0358

RF estimators 10 0.9148 0.5014 0.0216 0.0512 0.0305 0.0646
50 0.9258 0.5605 0.0182 0.0445 0.0245 0.0573
100 0.9303 0.5428 0.0187 0.0470 0.0251 0.0600

GB estimators 100 0.6647 0.4531 0.0484 0.0529 0.0615 0.0709
200 0.8300 0.5520 0.0364 0.0482 0.0458 0.0650
300 0.8964 0.5714 0.0299 0.0487 0.0376 0.0642

SVR C 0.1 0.4282 0.4187 0.0595 0.0539 0.0756 0.0682
1 0.5405 0.5239 0.0553 0.0482 0.0686 0.0610
10 0.6445 0.6136 0.0484 0.0441 0.0586 0.0536

aAbbreviations: regression (RR), random forest (RF), gradient boosting (GB), partial least squares regression (PLSR), and support vector
regression (SVR), mean absolute error (MAE), root mean squared error (RMSE).
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through cross-validation, ensures that the model is not
overfitting to the training data and can generalize well to
unseen samples.38 Lastly, the high R2 value and the close
agreement between the predicted and actual oil content values
in the test data set demonstrate the model’s ability to

accurately capture the underlying relationships between the

spectral features and the oil content. This strong predictive

performance suggests that the optimized PLSR model, in

combination with HSI data, has the potential to be a reliable

Figure 4. Fine-tuning of PLSR model to improve fitting performance. (a) RMSE as a function of the number of PLS components. (b) Relationship
between PLSR model performance and the number of model components. (c) Correlation between actual and PLSR predicted oil content. (d)
Residual plot of the test data set.

Figure 5. (a) VIP of different wavelengths at different random states. (b) R2 of PLSR optimization using the dimension-reduced (68 wavelengths)
data set. (c) RMSE of PLSR optimization using the dimension-reduced (68 wavelengths) data set. (d) Correlation between actual and the new
PLSR predicted (n = 11) oil content.
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and efficient tool for rapid prediction and assessment of the oil
content in food products, such as potato chips.
3.5. Variable Importance in Projection. In NIR

spectroscopy, absorption bands primarily arise from overtones
and combinations of fundamental molecular vibrations, such as
stretching and bending modes of chemical bonds containing
C−H, N−H, and O−H groups.21 Validated by four different
random states, high VIP scores have been consistently found at
specific wavelength regions of 900−940, 1183−1228, and
1376−1414 nm, indicating that these wavelength regions are
particularly significant in the model for predicting the response
variable (Figure 5a). The high VIP scores at these wavelengths
suggest that the molecular interactions or constituents that
correspond to these absorption features have a strong influence
on the variations captured by the PLSR model in the response
variable. For example, the high VIP score in the regions of
900−940 nm and 1183−1228 nm are related to the second
overtone of C−H stretching vibrations (−CH2), common in
fatty acids.39 It suggests that the oil content variations or
presence of organic compounds with C−H bonds are highly
relevant to the model’s predictions. Wavelengths between 1376
and 1414 nm are related to the secondary overtone expansion
of C−H.40−42 The minor spike around the wavelength of 1440
nm typically corresponds to the first overtone of O−H
stretching vibrations, indicating the small amount of water
content in the sample matrix.39

The new PLSR model, built using the selected 68
wavelengths (VIP > 1) as a mask, was optimized by evaluating
its performance at different numbers of latent variables. The
best performing PLSR model was identified at N = 11,
indicating that 11 latent variables were sufficient to capture the
essential information from the selected wavelengths while
avoiding overfitting (Figure 5b,c). The development of a
simplified PLSR model using the selected wavelengths offers
several advantages, such as reducing the dimensionality of the
input data and focusing only on the most informative
wavelengths for predicting the oil content. In addition, the

simplified model may exhibit better generalization performance
as it is less prone to overfitting compared to a model using the
full spectrum. By concentrating on the most relevant
wavelengths, the model can capture the underlying relation-
ships between the spectral features and the oil content more
effectively. The simplified PLSR model also performed well
using the testing data set, achieving R2 = 0.94 (Figure 5d).
3.6. Visualization of Oil Distribution in Potato Chips.

The optimized SNV + PLSR model was applied to map the oil
distribution in each representative potato chip as shown in
Figure 6. The oil content in potato chips was indicated by
color, and the darker red color indicated the higher oil content.
This image confirmed that a generally higher oil content in the
flat cooked potato chips when compared to the batch cooked
potato chips. During the frying process, pores were observed to
form on the surface and edges of the potato chips. This
increase in porosity facilitates greater oil absorption, which is
consistent with the mechanism of oil penetration that occurs
during frying.43 A similar observation was found using the HSI
technology for rapid visualization of the oil distribution in
potato chips. Future studies could further explore the effects of
different processing methods, formulations, and ingredients on
oil distribution and how these differences affect the nutritional
value and the consumer choice of foods.
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